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Abstract  Numerical experiments performed by Hofl' 30 vears ago on the application of Saint-
Venant's principle to trameworks are extended. and his conclustons qualified. CGuided by these
results. a general treatment is formulated employing a state variable approach : this leads directly
to an eigenvalue problem in which the decay rates are the cigenvalues of the cell transfer matrix.
Unity eigenvalues correspond to the transmitting modes of rigid body displacement and the stress
resultants of tension. bending moment. shearing torce and twisting moment. Consideration of the
associated eigenvectors and principal vectors gives exact values for the equivalent “continuum™
beam properties of the framework. such as equivalent cross-sectional arca. Poisson’s ratio. second
moment of area. shear coetlicient and :orsion constant.

INTRODUCTION

Saint-Venant's principle (SVP) underpins much ot solid mechanics by allowing the replace-
ment of an actual load system on a structural member by a statically equivalent load
distributed in a particular way demanded by the elastostatic solution ; the difference between
the two load distributions is termed “self-equilibrating™”, and since it has no stress resultant
or couple which requires reaction at some other location on the structure, there seems no
reason why the associated stress field should penetrate any great distance into the structure.
According to SVP this depth of penetration should be small.

SVP has been expressed and applied in a variety of ways by many authors ; for example
in beam problems, according to Sokolnikoff (1956}, it is commonly assumed that the local
eccentricities are not telt at distances that are about five times the greatest linear dimension
of the area over which the forces are distributed™.

The first mathematical proof of SVP was provided by Toupin (1965), who considered
an elastic cylinder of arbitrary length and cross-section subjected to a self-equilibrated load
system on one end only: Toupin demonstrated the exponential decay of elastic strain
energy. and hence stress. but SVP requires also that the rate of decay should be “rapid™.
In practice there are many examples, particularly for thin-walled structural members, where
the rate of exponential decay is so slow that SVP cannot really be said to apply. One
example 1s the effect of (self-equilibrated) longitudinal warping restraint during torsion,
when it is necessary to introduce the bimomen: (Vlasov. 1961), in order to provide a
plausible engineering theory.

The vast majority of published results pertaining to SVP [see recent reviews by Horgan
and Knowles (1983) and Horgan (1989)] have concentrated on continuum structural
members. including 1sotropic, anisotropic and composite structures. One of the earliest
studies of SVP by Hoff (1945) considered application to aircraft structures and demon-
strated this slow decay in thin-walled structures: to explain. Hoff performed various
“numerical experiments’ with space frameworks (i.¢. a three-dimensional pin-jointed truss)
for which exact analysis wus possible. albeit laborious.

In the present paper we first re-examine the numerical experiments conducted by Hoff
and qualify his conclusions : with the ready availability of computer programs for structural
analysis, this is now a simple task. In preparation for a general treatment, further numerical
experiments are conducted on various plane frameworks which. while simple, disallow

+ Visiting Research Fellow from the Department of Mechanical Engineening. Shanghai Maritime [nstitute.
Shanghai 200135, Peaple’s Republic of China



80 N. G. Stephen and P. J. Wang

torsional and out of plane loadings. As with Hoff, the purpose of this investigation included
the further elucidation of factors which may affect decay within a continuum structure
(where exact elasticity solutions are only available for mathematically amenable cross-
sections such as the circle or plane strain strip), but with the increased interest in large
flexible space frameworks for astronautical application such a study is of interest in its own
right. Pin-jointed frameworks are traditionally analysed by calculation of the tensile or
compressive load in each member, requiring consideration of the whole framework,
although there are techniques which allow consideration of a single or group of members.
However, it can be advantageous to estimate the overall structural performance of a
framework prior to such detailed analysis, for which a “continuum” beam model is useful.
Such models have been constructed by Renton (1984) and Noor and co-workers by a
variety of means including energy and finite difference methods: a review of this approach
was presented by Noor (1988).

SVP and the beam-like behaviour of a framework are closely related in two ways:
firstly. as Renton (1984) has observed. it is the validity of SVP which permits the approxi-
mate analysis of a space framework using a continuum “beam’™ model. Secondly, unless
one knows the required distribution of nodal forces which constitutes a transmitting result-
ant-—for example, a bending moment or axial force—then it may be impossible to know
what is a decaying mode; in effect. one wishes to know the framework equivalent of
g, =My I and o, = F; 4 for the stress distribution due to bending and tension. For a
continuum model one requires equivalent values for second moment of area / and cross-
sectional area 4. For a framework consisting of a series of identical repeated cells, Renton
employed a finite difference technique wherein the displacements of adjacent nodal sections
are related by a finite difference operator : the transmitting modes have deflection functions
which are finite polynomials of the cell number, while the decaying modes are typified by
deflections showing piecewise oscillatory decay.

The general treatment developed here employs a transfer matrix to relate the vector of
state variables- -the nodal displacement and forces—on either side of a generic cell; the
transfer matrix may be readily determined from a knowledge of the cell stiffness matrix.
Guided by the numerical experiments it is recognized that the state vector at any nodal
section will be a constant multiple (4) of the state vector at the previous section ; this leads
immediately to an eigenvalue problem. The decaying cigenvalues are (generally) distinct,
occurring in reciprocal pairs; the transmitting eigenvalue (4 = 1) has a multiplicity of six
for the two-dimensional framework (12 for the three-dimensional) and eigenvectors for
rigid body translations are coupled with principal vectors describing rigid body rotation
and the transmitting resultants, that is tension, shear, bending moment and torsion for the
three-dimensional case. The matrix of eigenvectors and principal vectors then forms a
similarity matrix which transforms the original transfer matrix into Jordan canonical form,
indicating that the transfer matrix is both defective and derogatory.

Bi-orthogonality properties of the eigenvectors then allow modal decomposition of
an arbitrary end load. A detailed examination of the coupling between the transmitting
eigenvectors and the associated principal vectors gives exact values for the continuum beam
properties of the framework, such as equivalent cross-sectional area, Poisson’s ratio, second
moment of area, shear coefficient and. for the three-dimensional framework, the torsion
constant.

The procedure is developed fully in conjunction with a two-dimensional example, and
finally applied to one of Hoff's three-dimensional frameworks.

2. HOFI'S NUMERICAL EXPERIMENTS

HofT first analysed a statically determinate four cell framework subjected to a “warping
group” of four axial forces of magnitude 100 applied at one end. as shown in Fig. 1; the
force group is self-equilibrated. having no resultant tension or bending moment, and may
be described as a bimoment. This framework was subsequently modified by the addition of
new (redundant) members, when the analysis was repeated.
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Fig. 2. Decomposition of tframework in Fig. 1 : member forces and reactions from lower and rear
faces not shown.

For the statically determinate tramework, Hoff noted that the maximum force in the
end (fourth) cell is still noticeable. having reduced to 25% of the applied load, but argued
that since only one state of equilibrium is possible in a statically determinate framework,
SVP can hardly be expected to apply. Hoff did not note that the majority of the member
forces are constant, while the axial members showing a linear force variation from cell to
cell. In terms of equivalent “"beam™ behaviour of one side of the framework this is consistent
with a constant shearing force and linear variation of bending moment: thus the longi-
tudinal member force may reduce to zero over four cells precisely because there are four
cells! This equivalent “*beam™ behaviour can be seen when the three-dimensional truss is
decomposedt into the six two-dimensional statically determinate trusses which are the
“faces” and “‘ends’ of the space framework (Fig. 2). Thus when Hoff’s framework is
extended to 10 cells then. consistent with linear variation, these longitudinal forces are
reduced to zero over 10 cells.

+ This decomposition 1s only possible because of the absence of internal or transverse diagonals within each
cell.
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Fig. 3. Statically indeterminate framework considered by Hoft (his Fig. 7): 18 redundant bars.

Hoff then modified this four cell tramework by the addition of a second diagonal to
the face of each cell (Fig. 3), expecting that SVP would be fully applicable by virtue of the
high degree of redundancy. According to Hoff. “This anticipation, however, is only partially
fulfilled, since the maximum load in the fourth field is still 12.5% of the value of the load
applied to one corner. The redistribution of the load consists only in evening out the
differences between the forces acting in adjacent flanges of the same bay.”” Again Hoft failed
to note the constant/linear variation of member forces, and again it is possible to decompose
this framework into six two-dimensional trusses in order to see this equivalent beam
behaviour. In fact the SVP decay is completely absent. and the “‘evening out™ of longitudinal
member forces is attributable to the “face™ symmetry of this second framework ; thus the
longitudinal member forces in the fourth cell of Fig. 1 are zero and — 25, while the equivalent
members in Fig. 3 have 4-12.5.

Finallv, Hoff added further transverse diagonals to the three inner “‘bulkheads’™ (Fig.
4), and noted that the addition of the six new redundant bars “‘is extremely effective in
localizing the internal forces in the structure™. when the applied load was reduced to a
maximum 0.7% in the fourth cell. Inspection of the bar forces along the framework does
not readily indicate the character of the variation. other than it is neither linear nor
exponential ; this example will be considered further in a later section. when it will become

Fig. 4. Statically indeterminate framework considered by Hoff (his Fig. 8) ; 24 redundant bars.
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apparent that only for this last framework can the decay anticipated by SVP be seen in
action.
The conclusions drawn by Holfl from his numerical experiments were

(1) The principle of SVP can ae applied to the case of a redundant framework.

(2) If the plane of loading 1s braced. the tendency towards the equalization of strains
is pronounced. and the distance required for the variation of strains to become negligible
is dependent to a great extent upon the efficiency of the bracing in this and parallel planes.

The first of these conclusions is true as far as it goes, but Hofl's second framework
shows that redundancy does not guarantec the applicability of SVP: on the other hand it
will be seen that non-zero member forces for a self-equilibrating end load applied to a
statically determinate framework may be confined to at most one cell, with all other
members transmitting zero force. when SVP is clearly applicable. The second conclusion
requires qualification : without bracing in the end plane of loading and at the free end, both
of Hoff’s first two frameworks become mechanisms : extra bracing in the faces does tend
10 equalize load. but only in the sense of equalizing lorce distribution within one cell;
variation from cell to cell is completely unaltered. remaining constant or linear variation.
What does make SVP applicable is the additional “bulkhead™ bracing in planes parallel to
the end face. as in Fig. 4.

3 SOME FURTHER NUMERICATL EXPERIMENTS

Structural analvses were performed using erther ANSYS 4.4A on a SUN workstation,
or GIMAST on an IBM PC. All frameworks considered have the following bar properties :
Young's modulus £ = 200 x 10° N m~ > length £ = | m. diagonal bars have length /2 m,
horizontal and vertical bars have cross-sectional arca 4 = 1 ¢m”, while diagonal bars have
cross-sectional area 4 2: these proportions are the same as those employed by Hoff.

3.1, Statically determinate exampice

Hoff suggested that one could hardlv expect SVP (o be applicable to a statically
determinate framework as only one state of cquilibrium is possible ; this should be re-stated
as one state of equilibrium for cuch applied load.

Thus consider the simple two-dimensional statically determinate K™ truss shown in
Fig. 5: by superposition we see that the self-equilibrated difference between applying a
compressive end load of magnitude 200 at the central pin joint rather than equally dis-
tributed over the two outer joints will decay over the first cell. Thus SVP can be applied to
a statically determinate framework.

On the other hand. it is possible to construct 4 statically determinate framework, as in
Figs 6(a.b). where the member forces due to a selt-cquilibrated load are transmitted without
decay (rather they are oscillatoryy until a stable sub-structure is reached.

3.2, Two-dimensional statically indeierminate frameworks

The operation of SVP in frameworks can be adequately described, and more clearly
seen, by restricting attention to two-dimensional frameworks. Inspection of Fig. 7 shows
that. with the exception of the first loaded cell. the member force in each adjacent cell is
reduced by a constant factor ol approximately 0.517 as one moves away from the loaded
end : this is the framework equivalent of exponential decay. Denoting the ratio of member
forces B in the (/- 1)th and jth cells as 4. an equivalent exponential decay rate may be
determined as

FGIMAS 15 o general purpose fimte eiement package developed in the People’s Republic of China to run
on a PC under the Microsolt operating syate .
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Fig. 5. Superposition of end loads for statically determinate two-dimensional framework showing
application of Saint-Venant's principle : self-equilibrated load decays over one cell.
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For the truss in Fig. 7. x = —0.66.

We now modify the framework by the addition of further diagonal members (Fig. 8),
again these have a cross-sectional area one half that of the horizontal and vertical members.
Inspection of the bar forces shows that, as with Hoff’s example (Fig. 3), decay is not by a
constant factor although it does approach the constant value 4 = 0.2829, equivalent to
k = —1.263. Also it is seen that addition of these new diagonals has resulted in more rapid
decay.

In both these examples, the bar force decay characteristic is as the sum of two or more
exponential decay modes ; in the first example (Fig. 7), one mode decays completely over
the first cell. leaving a single exponential decay. In the second, this modal decomposition
cannot be scen by inspection and a more general theoretical treatment is required.
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Fig. 6 Staucally determinate (rameworks with oscillatory member forces.
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Fig v Single (jthy cell of framework in Fig. 8: (a) and (b) show. respectively. positive joint loads
according to transfer matrix and finite element methods.

4. TRANSFER MATRIX METHOD

Consider the jth cell located between the jth and (j+ I)th sections of the two-dimen-
sional framework in Fig. 8. as shown in Fig. 9(a). Let p, and d, denote the nodal force and
displacement vectors™ respectively. associated with the jth section ; the state vectors at the
sections jand (j+1) are then's, = [dp]|" ands,., = [d;, ,p,,,]". State vectors on either side
of the cell are related by the transfer matrix G through the equation

s, = Gs, (2)

7d;r 1 ) (;dd de d/
o P : )

P ('pd (’pp P,
Now from our numerical experiments. particularly the two-dimensional framework of Fig.
7. where the applied end load is clearly self-equilibrating, it was seen that member forces B
decaved by a constant factor 7 from cell to cell. Consideration of Hooke’s law would

suggest that the nodal displacements associated with this self-equilibrated load should also
decay in similar manner. and we therefore set

or in partitioned form

S ., = /8, 4)

i

Substituting the above into eqn (2) gives

T Posiine torees are devined according to the conventions of the Theory of Elasticity.



Saint-Venant's principle 87

(G s, = 0. (5)

Thus the decay factors ~ are the cigenvalues of the transfer matrix G: the associated
eigenvectors give the jth section nodal displacements and loads tor the particular decay
mode. One simple method of obtaining the transter matrix of the cell is from its stiffness
matrix K: referring to Fig. 9tb). the force and displacement vectors, F and d. are related
by the matrix equation F = Kd. where

| Fw:{l\' K ‘,dd"': ©

because. by convention. the torce sector F s detined positive when the components are

parallel to the coordinate directions. we have ¥ = - p. F,. — p,, . and substituting into
eqn (6). expanding and rearranging gives
'd’u," kK K. K rd,”
I = ) _ ] . (7
p...] IK , K. . K K KK L

Note that the stitfness matrix K is ssmmetric. but will be singular as the cell 1s not fixed in
any way.

SOITWO DIMENSIONAT ENAMPLL

We continue with the two-dimensional framework shown in Fig. 8: the force and
displacement vectors are. Irom Fig. J(a).

p:PPoP PP
R VLN N SN LR N O
I T S VN E T O

| B IV SN TR B TR E A (8)

The cell stiffness matrin K can be determined by the fimte element method [see. for example,
Stasa (1985)]. or by matrix structurat analysis [see. for example. Przemieniecki (1968)]. but
for brevity is not presented here. Matrix manipulations were performed using MATLAB
to give the eigenvalues and cigenvectors. The eigenvalues are

353460
102829
occurring as three reciprocal pairs. as might be expected, together with six unity eigenvalues
associated with “rigid body™ translational and rotational displacements of the cross-sec-
tional plane. and nodal forces having a cross-scctional resultant which are therefore trans-
mitted along the framework

We consider first the decayimyg modes: it 7 15 an eigenvalue, then so is [:2 and the
equivalent decay rates are then A = In(2). and - A = In (1 7). The “slowest™ decay factor

(eigenvalue) pair is [3.3346 0.2329]". and a seli-cquilibrated load on the left face of the cell
reduces in magnitude by a factor 0 2829 as one moves (o the right face.” Le.

16.779K
0.0596

14,2435
00702 |

In dynanues the duranon of a temporal exponentiad docis exp 7 11 is often taken as the ume for it to
reduce to less than 2%« of its umtal value. enc this s normadiy taken as tour time constants (49) 1 in the present

S o7
30

problem the spatial decay expe 1263 reduces 1o 2.3%6 over three cellscand (o 0.64%0 over four cells.

SAS 33-1-G
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1.263

p,.: =02829,. or p,., =pe”
On the other hand. suppose the self-equilibrated load is applied to the right face of the cell:
the magnitude is again reduced by the same factor, 0.2829, as one moves to the left face,

Le.
p, = 0.2829p, .,

but as one transfers across the cell from left to right according to the transfer matrix
formulation, the load increases. i.e

P = 3.5346p.,.

1.263
or p., =pe'

This slowest decay rate is the one observed in the “"numerical” experiment (Fig. 8) after the
more rapid modes have decayed.

The second “slowest™ decay factor is . = 0.0596, k = —2.8201, and the third is
.= —0.0702, k = —2.6564+ri. the negative eigenvalue indicates that the bar forces
change sign from cell to cell. which is oscillatory decay. The eigenvectors associated with
cach of these decay eigenvalues are given in the Appendix, and the nodal forces are shown
in Fig. 10.

If we now return to our second numerical experiment, Fig. 8. we see that the applied
end load p, consists of two decay modes

where. by simple calculation, z,
may then be determined from the equation

100 1 100 100
0 | ~2435 -~ 78
—200 200 —200
R S Bl ©)
100 100 100
o0 2435 | 8

—~0.4713. 2. = 1.4713. Nodal forces at the nth sectiont

P 100 T 100 ]

P — 2435 —78

P - 200 —200

1 p| = —0.4713 . 0.0596" +1.4713 0 0.2829" (10)
: P.. 100 100

P | 2435 78]

and member forces within the cell can then be calculated from a knowledge of the nodal
forces on the #th and n+ 1th sections.
Alternatively this self-equilibrating end load may be expanded into its constituent

decay modes by employing the bi-orthogonality property of the eigenvectors. Denoting the
ith and jth eigenvectors of the transfer matrix G and its transpose G' as X, and Y,
repectively. then, as 15 well known

(7, — /) YIX, = 0. (1
and hence the bi-orthogonality property Y'X; = 0 when 4, # /;; in the event of independent
eigenvectors having the same eigenvalue. as occurs in the three-dimensional example, the
above leads to a simple algebraic calculation.

1t 1s assumed that the toad 1s applied on the end section 7 = 0.
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If we now denote the applied end state vector as s,. and expand as
s, = > 2X. (12)

where m is the number of eigenvectors. then pre-multiplying by Y| gives

m

Yis = Y 2Y!IX = 2Y'X,.
P

and hence

Y s,

This general procedure cannot yet be implemented : although the applied load is known.
the displacement components are not ; that is s, = [d, po]’. and thus far only p, is known.
The required vector d, may be determined from the boundary conditions at the right-hand
end of the framework which we suppose is fixed. The state vector at the nth nodal section
is related to the free (left-hand) end state vector s, by

/du X Vdu
= G” : (14)

pu Vpu
Strictly the framework should be of semi-infinite length, when d, — 0 as n — ¢ ; however.
from the numerical point of view the larger n. the greater the errors introduced into G". In

this example the slowest decay rate has 2 = 0.2829. when 2° = 0.00051. 2* = 0.000041, and
we take the later as negligible in relation to unity. We therefore set

R R P

where A, B. C and D are the partitioned sub-matrices of G*. Then

Ad, + Bp, =0. d,= ~-A ]Bpw

We now expand the free end state vector ast

and employing eqn (13) gives the coelficients as
20 =0(-9), % =00-8). % = —x =00-7). 2, =-04712, 2. =14712,

which agree with our previous result. [O is order (of magnitude).]

We now turn to the eigenvectors associated with the unity eigenvalues, i.e. the trans-
mission modes; MATLAB employs a QR algorithm which returns a transformation matrix
of 12 independent eigenvectors which will diagonalize the original transfer matrix. The

* Although there are 12 cigenvectors. we exclude those pertwining to rigid body displacements, since dy, = 0.
and also the transmission mode cigenvectors pertaining to the resultants, as the applied end load is clearly self-
equilibrating. We include both the ~left to right™ and “right to left™ decav modes in order to illustrate that there
is no contribution from the latter.
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computed eigenvalues are close to, but not exactly, unity ; however, by physical argument
they must be exactly unity and this is imposed by solving the set of equationst

(G-DX, =0, (15)

where 1 is the identity matrix, employing the reduced row echelon form command “RREF”
within MATLAB. This shows that there are only two independent eigenvectors associated
with 2 = |, which are the rigid body displacement in the x- and y-directions. The procedure
for obtaining the principal vectors (Z,) is to set up the chain of equations

GX, =X,
GZ, =7, +X,
GZ: = Z: +Z|,etC. (16)

and again use the RREF command on the augmented matrix [G—1, X] to find Z,, etc. In
this way it is found that the “beam™ resultant of tension is coupled with rigid body
displacement in the v-direction. and shearing force is coupled to bending moment, which
in turn is coupled to rotational displacement and thence rigid body displacement in the y-
direction. The complete similarity or transformation matrix of eigenvectors and principal
vectors is given in the Appendix together with the Jordan canonical form of the transfer
matrix.

The coupled eigenvectors and principal vectors associated with the unity eigenvalues
allow determination of the equivalent “‘beam’ properties of the framework. Thus consider
the seventh and eighth columns of the transformation matrix T (Appendix) which give rise
to the 2 x 2 Jordan block : we use the MATLAB syntax to identify these columns as T(:, 7)
and T(:.8). respectively. The rigid body displacement in the x-direction, T(:,7), is the
eigenvector and can exist in its own right if the cell, or indeed the framework, is not
restrained : more importantly it is the ““generating” eigenvector for the principal vector
defining tension, according to the chain of equations (16). Thus for these vectors we have

GT(.8) =T(C.8)+T(, 7). (17)

This representation is shown physically in Fig. 11, where we see that a total tensile load of
T=1+2x0.89645 = 2.7929. is coupled with a cell elongation of 3.9645x 10~*. For a
continuum beam the constitutive relationship is
7= 4 (18)
= R

and in this example. AE; L = 2 x 10", to give an equivalent cross-sectional area of 3.522386
cm’, which represents the sum of each axial bar cross-sectional area (which is three) plus a
contribution from the diagonal members. Additionally there is a *“Poisson’s ratio” con-
traction of the cross-section: strain in the x-direction, &, = éu/L = 3.9645 x 1078, while
strain in the y-direction, &, =(—-2x1.0355x107%)/2 = —1.0355x 107%, and writing
&, = —ve, we find the equivalent Poisson’s ratio v = 0.2612.

The ninth to twelfth columns of the transformation matrix are coupled within a
4 x 4 Jordan block associated with shear and bending stress resultants, and cross-sectional
rotation and transverse displacements. Again a rigid body displacement, now in the y-
direction, T(:.9). is the eigenvector and can exist in its own right if the cell or framework is
not restrained. The tenth column, T(:, 10), defines a rigid body rotation of the cell and this
is coupled with the transverse displacement of the cell according to

+ For numerical reasens it was found necessary to reduce temporarily the value of Young's modulus by two
orders of magnitude to £ =200x 10" N m ° whilst using the “RREF” routine within MATLAB, thereby
increasing the magnitude o7 the displacements. making them less susceptible to computational error.
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T(:41) . 2. = 16.78C T(:4) . 2, = /4, = 0.0596
2.4351 12.4,551
—1 1 -—
—— 2 2 —o-
2.4351 ‘2.4351
T(:2) , A, = 3.5346 T(:5) . 2s =1/, = 0.2829
0.779% 10.7799
— 1 1 —-—
-—— 2 2 —o
— 1 1 —-—
0.779¢ ‘0.7799
T(3), Ay = —14.244 T(:6) . hs = /5, = —0.07021

b o

‘2 2’

f o

Fig. 10. Nodal forces for decay modes : displacements not shown.

GT(:.10) = T, 10)+T(.9). (19)

and this is shown physically in Fig. 12. Note that the expected y-component of displacement,
due to cross-sectional rotation, in the vector T(:. 10) is zero as the cosine of the angle of
rotation is effectively unity.

The eleventh column, T(:, 11), defines a bending moment on the cross-section of
magnitude 2. and this is coupled with the tenth column according to the relationship

GT(. 1) =T, 1D +T(.10). (20)

as shown in Fig. 13.
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Fig. 11. Coupling ol eigenvector Ti:. 7) for rigid body displacement in the x-direction, with principal
vector T(.8) for tension ; displacements are exaggerated. Dotted lines show initial cell configuration.

4.6935x1078

T(:,10) 1(:,10) + T(:,9)

Fig. 12, Coupling of ergenvector T'(:..9) tor rigid body displacement in the y-direction, with principal
vector T, 10) fer rotation : displacements in v-direction of left-hand face are negligible.

2.3468x107°
[ g ]

6.1298%x107°

1
T(:,11) T(:11) + T(:,10)
Fig 13 Coupling of principal vector 1. 10) tor rotation. with principal vector for bending moment

T Hh.
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The constitutive relationship for beam bending is M = EI/R, where M is bending
moment and R is beam curvature, and by geometric considerations we find that
1/R=46935x10 . thus the equivalent second moment of area is found to be
I= 213061 x10"*m*

Figure 13 also shows an apparent shift of the neutral axis towards the tension side of
the cell: in fact this is a Poisson's ratio effect whereby during pure bending, transverse
displacement of the upper and lower surfaces of the beam is greater than that of the neutral
axis. Thus from Sokolnikoff (1956). article 32, the transverse displacement in the y-direction
is (ignoring the constants of integration),

/

Z’E[(.\': +vi7), (21)

r=—

where a minus sign has been introduced to account for the different coordinate axes. Thus
the transverse displacement at the ncutral axis (v = 0) is

M 6129810 22
.o == ‘7275[7'\ = 6.1298 x 0 - ( )

while the transverse displacement at the upper and lower surfaces (v = +1) is zero, i.e.

) B M Y20 23)
v, = 2El(,\ +v) = (. (2

Combining these two results together with M = 2. E=200x 10°Nm 2, /= 2.13061 x 10~*
m* again leads to Poisson’s ratio v = 0.2612; it is gratifying that there should be no conflict
between the two Poisson’s ratio cffects.

Finally, we consider the twelfth column T(:.. 12) which defines a shearing force and

a bending moment; this is coupled with the eleventh column T(:, 11) according to the
relationship

GT(.12) =T 12)+ T 1], (24)

and this is shown physically in Fig. 14,

1.5009¢1077 | r»yzsazmo-7
0.46935 ' |
1 —- ‘ = fo.46935

1.0613 10613
6.1298x107° — | =K 1 :

1
i
|
0.48935 ]

| f0.45935
1 —e I3 ¥
1 | i
|

1.5009%x:077 - a’ l=— 1 2662x1077
T(:12) T¢12) + T(,11)

Fig. 14. Coupling of principal vector Te:. 12) for shearing force and bending moment, with principal
vector T(:. 11) for bending moment.
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We see that shearing forces of magnitude 2 on both cross-sections are balanced by a
bending moment of magnitude 2 on the left-hand cross-section.

For a ~one-dimens:onal™ continuum beam the deflection due to shear is incorporated
by the introduction ot a shear coeflicient x within the equation

Q= KAG. (25)

where Q 1s the shearimg torce. A is the cross-sectional area. G is the shear modulus and y 1s
the shear angle : within Timoshenko beam theory (1921), the shear angle is defined according
to the relationship

de

e (26)

=\ -

where di dv 1s the centreline slope and  1s rotation of the cross-section. The simplest
method ol evaluating the shear angle is to impose u rotation on the cell in Fig. 14 to bring

the centreline slope to the horizontal. when dr dx 1s zero and 7 = ¥ ; the cross-sectional
rotations on cither side of the cell are then different and taking the average gives a shear
angle of = 144486 <10 . Emploving Q = 2. cquivalent shear modulus G =

E2(1+v)=7929> 10" N m - and cquivalent arca as calculated above. the equivalent
shear coefficient is calcuated as v = 0.4936.

O ANALYSIS OF HOFE'S THREE-DIMENSIONAL FRAMEWORK

We now return to Holf's third framework ; the transfer matrix® is now (24 x 24), and
has 12 unity cigenvalues and the six reciprocal pairs of decay eigenvalues

22,6847 [ —13.2387] [ —15.2487] [ —15.248
) I 1).()4411‘ Lomss} [().()656} [-0.0656]’
As before the unity ergenvalues are associated with rigid body displacements in the x-, y-
and now the z-directions: coupled with these are rotations, tension, shear and bending in
two planes. and torsion.

The decay ergenmodes show two new features : firstly there are now pairs of repeated
real cigenvalues having independent cigenvectors. which is a consequence of the rotational
symmetry of the framework : secondhy there are now pairs of complex conjugate eigenvalues,
having complex cigenvectors. Itis noteworthy that the real eigenmodes self-equilibrate over
each “chord™ of the end of the framework. while the complex modes self-equilibrate over
the end section of the tramework as @ whole.

As with the previcus two-dimensional example. an applied end load may be expanded
into its constituent modes by emploving the bi-orthogonality property ; in the present three-
dimensional cxample the presence of complex eigenvectors deserves comment. Firstly, we
note that a complex eigenvector is not physically permissible. but when considered in
conjunction with its conjugate. the actual displacements and loads are the real and imagin-
ary parts in turn. On the other hand. mathematically it 1s preferable to retain the complex
etgenvector. m which case the modal expansion will lead to a pair of complex conjugate
participation factors. 7. Additionally 1t must be remembered that the dot product of two
complex vectors a and b is defined as ab = a'b. where an overbar denotes the complex
conjugate. To illustrate the procedure. and also the details for the repeated real eigenvalues,
we constder Hoft's end load.

The free end Toad vector s

30744 - 201491

3.0744 + 21491
U218 +0.1327)

0.2185-0.1527i

po o= 00100 o 100 00 100 00 100]".

FFor breviny the transter matris and cigenvectors and principal vectors are not listed in full.
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and the associated displacement vector, according to the procedure described in Section 5,

1S

d, =10 “x[~u-—-ab —au—b aab a -a—>b]",
where @ = 1.1209. h = 4.825].
Expanding the vector s, ast
12

7.X,. (27)

1

Sy =

K )

and noting that eigenvectors X, X, X, and X, are complex. then

Similarly. we find . = O(—10), %, = O{— 10). The eigenvalues /5 and 7, are identical. but
the eigenvectors are independent. which leads to a “block™ form for Y'X when the
coefficients 2 and x, are obtained by solving

2 Y Xe4+%.Y'X, = Ys,
1Y, X+ 2. YIX, = Yis, (28)

from which 7. = O(—9). ., = Ot - 11). The coeflicients ;. %,,. %, and %, are found in
identical fashion. and are of similar order. The remaining coefficients are straightforward
to determine. the only significant ones being 2- = 50-48.2631, z, = 50-+48.263i. Thus the
applied end load may be expanded as

s, = 2-Xo+7Xe = . X- +7-X- (29)
and nodal forces on the nth section may be determined from the equation

s, = (50 —48.2631)X-(0.2185+0.15271)" + (30 + 48.2631)X - (0.2185—0.1527i)".  (30)

where
Xo=ppy p—p ¢ p—pqg —pp—yg vic-d ¢~cd —c¢—c—d —ced]

and p =(2.2855—-3.32901) x 10 " ¢ == (3.6626 - 1.20441) x 10 ". ¢ = —0.5186.d = 1.0.

7. CONCLUDING REMARKS

By employing the transter matrix of a single cell to relate the state variables on either
side, the calculation of equivalent beam properties and decay modes for a pin-jointed
framework of repeating cells is reduced to standard eigen analysis, thus providing a very
efficient means of determining both. The procedure described here is capable of extension
to rigid joints at the expense of an increase in dimension of the state vector and transfer
matrix. since a rigid joint implies an additional bending moment and rotation at each node.
For a two-dimensional framework the state vector would increase in size by 50%. while a
three-dimensional framework would imply bending moments in two planes, together with
the associated bending rotations. and a twisting moment and rotation ; each node therefore
requires six force or moment components and six displacement components, and the state
vector for a section would have 48 components. an increase of [00%.

The procedure has also been developed for determination of the decay eigenmodes of a

*Since the end load of g, 4 s clearly self-equilibrating. 1t is expanded in terms of the (first) 12 decay
eigenmodes: the remaining 12 cigenmodes per ain to the rigid body displacements and the transmitting modes.
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continuum beam, for which exact analytical solutions are available only for mathematically
amenable cross-sections such as the circle or the plane strain strip, as an extension of the
finite element method ; the authors describe this application to beams of general cross-
section in a separate report.
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T 'GT = J. where J 1s a Jordan block matrix.
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